The dynamic expansion architecture is becoming popular in class incremental learning, mainly due to its advantages in alleviating catastrophic forgetting. However, task confusion is not well assessed within this framework, e.g., the discrepancy between classes of different tasks is not well learned (i.e., inter-task confusion, ITC), and certain priority is still given to the latest class batch (i.e., old-new confusion, ONC). We empirically validate the side effects of the two types of confusion. Meanwhile, a novel solution called Task Correlated Incremental Learning (TCIL) is proposed to encourage discriminative and fair feature utilization across tasks. TCIL performs a multi-level knowledge distillation to propagate knowledge learned from old tasks to the new one. It establishes information flow paths at both feature and logit levels, enabling the learning to be aware of old classes. Besides, attention mechanism and classifier re-scoring are applied to generate more fair classification scores. We conduct extensive experiments on CIFAR100 and ImageNet100 datasets. The results demonstrate that TCIL consistently achieves state-of-the-art accuracy. It mitigates both ITC and ONC, while showing advantages in battle with catastrophic forgetting even no rehearsal memory is reserved.
translated by 谷歌翻译
本文提出了一种新颖的视频介绍方法。我们做出了三个主要贡献:首先,我们通过引入基于贴片的同型(DEPTH)扩展了以前的变压器,以补丁的对齐方式扩展了贴片对齐,该均值(DEPTH)改善了补丁级的功能对齐,而没有其他有各种变形的监督和受益的挑战场景。其次,我们引入了基于面膜修剪的贴片注意力(MPPA),以通过修剪较少的基本功能和使用显着性图来改善贴合的功能匹配。MPPA用无效的像素增强了扭曲令牌之间的匹配精度。第三,我们引入了空间加权适配器(STA)模块,以在从深度中学到的变形因子的指导下,准确地关注空间代币,尤其是对于具有敏捷运动的视频。实验结果表明,我们的方法在定性和定量上优于最新方法,并实现了新的最新方法。
translated by 谷歌翻译
联合学习(FL)框架使Edge客户能够协作学习共享的推理模型,同时保留对客户的培训数据的隐私。最近,已经采取了许多启发式方法来概括集中化的自适应优化方法,例如SGDM,Adam,Adagrad等,以提高收敛性和准确性的联合设置。但是,关于在联合设置中的位置以及如何设计和利用自适应优化方法的理论原理仍然很少。这项工作旨在从普通微分方程(ODE)的动力学的角度开发新的自适应优化方法,以开发FL的新型自适应优化方法。首先,建立了一个分析框架,以在联合优化方法和相应集中优化器的ODES分解之间建立连接。其次,基于这个分析框架,开发了一种动量解耦自适应优化方法FedDA,以充分利用每种本地迭代的全球动量并加速训练收敛。最后但并非最不重要的一点是,在训练过程结束时,全部批处理梯度用于模仿集中式优化,以确保收敛并克服由自适应优化方法引起的可能的不一致。
translated by 谷歌翻译
开放式识别(OSR)的目的是同时检测未知类别的样本并分类已知的级别样本。大多数现有的OSR方法是归纳方法,通常遭受域移位问题的困扰,从已知类别域中学习的模型可能不适合不知名的类域。解决这个问题的启发,受到跨导性学习在许多其他视觉任务中减轻域转移问题的成功的启发,我们提出了一个迭代的转移性OSR框架,称为IT-OSR,该框架的实现了三个探索的模块,包括一个可靠性采样模块,A功能生成模块和基线更新模块。具体而言,在每次迭代中,在探索的可靠性采样模块中介绍了双空间一致的采样方法,用于根据基线方法分配的伪标签从测试样本中选择一些相对可靠的采样模块,这可能是任意的敏感性OSRR方法。然后,在正交编码条件下设计的有条件的双对逆向生成网络在特征生成模块中设计,以根据所选的测试样品和伪标签生成已知类和未知类别的判别样品特征。最后,通过共同利用生成的功能,带有伪标签的选定测试样品和训练样本,对基线更新模块中的样本进行了重新预测进行了更新。标准数据集和交叉数据集设置的广泛实验结果表明,通过将两种典型的电感OSR方法引入所提出的IT-OSR框架中,派生的转导方法比15种最先进的方法更好地执行了更好的性能。在大多数情况下。
translated by 谷歌翻译
直到最近,研究人员才试图提供可证明的群体公平保证的分类算法。这些算法中的大多数都受到训练和部署数据遵循相同分布的要求造成的骚扰。本文提出了一种输入 - 不合时宜的团体公平算法,即Fairsmooth,用于改善分类模型的公平性,同时保持显着的预测准确性。开发了一种高斯参数平滑方法,以将基本分类器转换为平滑版本。通过仅使用有关该组的数据来学习一个最佳的单个平滑分类器,并且通过平均所有单个平滑的参数来生成所有组的总体平滑分类器。通过利用非线性功能分析的理论,将平滑的分类器重新构成NemyTSKII操作员的输出函数。进行理论分析是为了得出Nemytskii操作员的平滑状态并诱导特征差异的平滑歧管。从理论上讲,我们证明了平滑歧管具有一个全局LIPSCHITZ常数,该常数独立于输入数据的域,该域衍生了输入 - 不合时式认证的组公平性。
translated by 谷歌翻译
学习模当融合的表示和处理未对准的多模式序列在多式联情绪识别中是有意义的,具有挑战性。现有方法使用定向成对注意力或消息中心到熔丝语言,视觉和音频模态。然而,这些方法在融合特征时介绍信息冗余,并且在不考虑方式的互补性的情况下效率低效。在本文中,我们提出了一种高效的神经网络,以学习与CB变压器(LMR-CBT)的模型融合表示,用于从未对准的多模式序列进行多峰情绪识别。具体地,我们首先为三种方式执行特征提取,以获得序列的局部结构。然后,我们设计具有跨模块块(CB变压器)的新型变压器,其能够实现不同模式的互补学习,主要分为局部时间学习,跨模型特征融合和全球自我关注表示。此外,我们将融合功能与原始特征拼接以对序列的情绪进行分类。最后,我们在三个具有挑战性的数据集,IEMocap,CMU-MOSI和CMU-MOSEI进行词语对齐和未对准的实验。实验结果表明我们在两个设置中提出的方法的优势和效率。与主流方法相比,我们的方法以最小数量的参数达到最先进的。
translated by 谷歌翻译
基于音频视频的多模式情绪识别由于其强大的性能引起了很多人。大多数现有方法都侧重于提出不同的跨模态融合策略。然而,这些策略在不同模式的特征中引入了冗余,而无需完全考虑模态信息之间的互补特性,并且这些方法不保证在跨跨和间间交互期间的原始语义信息的非损失。在本文中,我们提出了一种基于自我关注和残余结构(CFN-SR)的新型跨模型融合网络,用于多式联情绪识别。首先,我们对音频和视频模型执行表示学习,以通过有效的ResNext和1D CNN获得两个模态的语义特征。其次,我们将两个模态的特征分别馈送到跨模块块中,以确保通过自我关注机制和残余结构来确保信息的有效互补性和完整性。最后,我们通过用原始表示拼接获得的融合表示来获得情绪的产出。为了验证所提出的方法的有效性,我们对Ravdess数据集进行实验。实验结果表明,拟议的CFN-SR实现了最先进的,并以26.30M参数获得75.76%的精度。我们的代码可在https://github.com/skeletonnn/cfn-sr获得。
translated by 谷歌翻译
Deep learning models can achieve high accuracy when trained on large amounts of labeled data. However, real-world scenarios often involve several challenges: Training data may become available in installments, may originate from multiple different domains, and may not contain labels for training. Certain settings, for instance medical applications, often involve further restrictions that prohibit retention of previously seen data due to privacy regulations. In this work, to address such challenges, we study unsupervised segmentation in continual learning scenarios that involve domain shift. To that end, we introduce GarDA (Generative Appearance Replay for continual Domain Adaptation), a generative-replay based approach that can adapt a segmentation model sequentially to new domains with unlabeled data. In contrast to single-step unsupervised domain adaptation (UDA), continual adaptation to a sequence of domains enables leveraging and consolidation of information from multiple domains. Unlike previous approaches in incremental UDA, our method does not require access to previously seen data, making it applicable in many practical scenarios. We evaluate GarDA on two datasets with different organs and modalities, where it substantially outperforms existing techniques.
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
As one of the prevalent methods to achieve automation systems, Imitation Learning (IL) presents a promising performance in a wide range of domains. However, despite the considerable improvement in policy performance, the corresponding research on the explainability of IL models is still limited. Inspired by the recent approaches in explainable artificial intelligence methods, we proposed a model-agnostic explaining framework for IL models called R2RISE. R2RISE aims to explain the overall policy performance with respect to the frames in demonstrations. It iteratively retrains the black-box IL model from the randomized masked demonstrations and uses the conventional evaluation outcome environment returns as the coefficient to build an importance map. We also conducted experiments to investigate three major questions concerning frames' importance equality, the effectiveness of the importance map, and connections between importance maps from different IL models. The result shows that R2RISE successfully distinguishes important frames from the demonstrations.
translated by 谷歌翻译